Interior Point Trajectories in Semidefinite Programming

نویسندگان

  • Donald Goldfarb
  • Katya Scheinberg
چکیده

In this paper we study interior point trajectories in semideenite programming (SDP) including the central path of an SDP. This work was inspired by the seminal work by Megiddo on linear programming trajectories 15]. Under an assumption of primal and dual strict feasibility , we show that the primal and dual central paths exist and converge to the analytic centers of the optimal faces of, respectively, the primal and the dual problems. We consider a class of trajectories that are similar to the central path, but can be constructed to pass through any given interior feasible point and study their convergence. Finally, we study the rst order derivatives of these trajectories and their convergence. We also consider higher order derivatives associated with these trajectories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

A path-following infeasible interior-point algorithm for semidefinite programming

We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

An Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semidefinite Programming

This paper proposes an infeasible interior-point algorithm with full Nesterov-Todd step for semidefinite programming, which is an extension of the work of Roos (SIAM J. Optim., 16(4):1110– 1136, 2006). The polynomial bound coincides with that of infeasible interior-point methods for linear programming, namely, O(n log n/ε).

متن کامل

Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming

In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. We propose primal-dual interior point methods based on the unscaled and scaled Newton methods, which correspond to the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We analyze local behavior of our proposed methods and show their local and superlinear conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998